# Tag: Data Storage

## How to Build a Computer 27: Data Recovery

We’ve covered the physical aspects of a hard disk drive, tonight we’ll touch on the way data is organized on the drive, by covering those two most important topics; keeping secrets and ferreting other people’s out.

In this case describing the times this joke has been used since it was last funny.

## How to Build a Computer 26: Spindles and Platters and So Forth

We’ve discussed what it means to actually store information on a hard disk drive, how you magnetize it and how you pull that information off. Neat stuff, but a bit heavy on the abstract physics. Today we’re going to zoom out a bit and look at the mechanical bits of how hard drives work. Here, let me start you off with a picture. Take a look at these two hard drives (conveniently cracked open for viewing purposes), one I borrowed from the boss man, and the other I picked up off the “Free Stuff” shelf when they moved the engineering department. Tell me which you think stores more data:

None of the above. Neither of is ever going to run again. Look at that dust!

## How to Build a Computer 25: The Magnetoresistive Effect

Our story starts with Lord Kelvin, one of the great old school physicists. You can read about his career from anonymous’s old Saturday Night Science. Actually, at the point he enters this story I don’t think Kelvin had made lord yet; he was just some bloke named Thompson. This Thompson fellow was playing around with magnets and electricity and that sort of thing. What he discovered is that you can change the resistance of a wire with a magnetic field. And furthermore that that change in resistance depends on the angle between the wire and the magnetic field.

Let’s take that a little more slowly. Change in resistance when you’re in a magnetic field? Okay, I can buy that; there’s all this nonsense about wires and magnets and whatnot that I’ve been blathering about up until this point. Angle? The resistance in your wire will vary a great deal whether it’s parallel or antiparallel to the magnetic field on your disk. (Antiparallel means parallel, but facing the other direction. The northbound lane on a highway is antiparallel to the southbound lane.) If your wire is running current right-to-left and your magnetic field is pointed left-to-right then your wire’s resistance is at it’s highest because of your antiparallel configuration.