What Is it Like to Fall into a Black Hole?

And I don’t mean this metaphorically. I’m not talking about a fiscal cliff or a socialist America. I’m bored, frankly, of politics, so I’m spending the next few days reading about cool stuff I don’t understand.

Like Black Holes. And what happens when you fall into them. From Scientific American:

According to current theories of physics, a black hole is mostly just empty space. Its perimeter or “event horizon” is not a material surface, but just a hypothetical location that marks the point of no return. Once inside, you are gripped too tightly by gravity ever to get back out. By then, falling at nearly the speed of light, you have a few seconds to look around before you reach the very center and get crushed into oblivion. But nothing noticeable should happen at the moment of crossing. One of Einstein’s great insights was that observers who are freely falling—whether into a black hole or toward the ground—don’t feel the force of gravity, since everything around them is falling, too. As they say, it’s not the fall that kills you; it’s the sudden stop at the end.

Do you get all stretchy? Unclear:

To the infalling observer, space looks like a vacuum, and in quantum theory, a vacuum is a very special state of affairs. It is a region of space that is empty of particles. It is not a region that is empty of everything. There’s no getting rid of the electromagnetic field and other fields. (If you could, the region would not merely be empty, but nonexistent.) A particle is nothing more or less than a vibration one of these fields, and what makes a vacuum a vacuum is that all the possible vibrations cancel one another precisely, leaving the fields becalmed. To maintain this finely balanced condition, the vibrations must be thoroughly quantum-entangled with one another.

To the outgoing observer, the horizon (or membrane) cleaves space in two, and the vibrations no longer appear to cancel out. It looks like there are particles flying off in every direction. This is perfectly compatible with the infalling observer’s viewpoint, since the fields are what is fundamental and the presence of particles is a matter of perspective. To put it differently, emptiness is a holistic property in quantum physics—true for a region of space in its entirety, but not for individual subregions.

I’m lost. I feel like falling into a black hole can’t be any more baffling than reading about falling into a black hole. But at least I’m not alone:

Someone falling into a black hole doesn’t pass uneventfully through the horizon, but hits a wall of fire and is instantly incinerated. “I think it’s crazy,” [physicist Joe] Polchinski admitted. But in order for a black hole to decay and its contents to spill out, as quantum mechanics demands, the infalling observer can’t see just a vacuum. The firewall idea strikes me as similar to past speculation that black holes are somehow material objects—so-called black stars or dark matter stars—rather than merely blank space.

“I spent 20 years confused by this,” Polchinski said, “and now I’m as confused as ever.” It would be nice to answer the question, if only so that no one ever has to undertake the journey to answer the question.

Actually, I have a better example: after a holiday feast, plump with sugar and animal fat and wine and dairy, I fall into a black hole. On the sofa.